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Abstract

LetX = {Xt : t ≥ 0} be a super-Brownian motion in Rd with d ≤ 3. We give
a short proof of existence of the local time Lx

t of X and deduce a semimartingale
representation of Lx

t which allows us to prove that
∫ t

0
Xs(f) ds =

∫
Rd f(x)Lx

t dx
a.s. for all bounded measurable functions f . This implies that three different
notions of super-Brownian local time known in the literature are equivalent. For
d = 2 and any continuous function with compact support ψ, we give an easy
proof of the weak convergence of r−1

∫ rt

0
Xs(ψ(·−r1/2y))ds to

∫
Rd ψ(x)dxLy

t as
r → ∞, a fact that was discovered by Cox and Griffeath [3] and Fleischmann
and Gärtner [9].

1 Introduction

The local time of the super-Brownian motion X := {Xs, s ≥ 0} may be formally
defined as L0

t =
∫ t
0

∫
Rd δ0(x)Xs(dx) ds (where δ0 denotes the Dirac delta function at

0 ∈ Rd), and can be interpreted as a measure of the amount of time in the interval
[0, t] during which 0 belongs to the support of X.

A rigorous meaning of super-Brownian local time was given by Adler and Lewin
in [1], where they showed that if d ≤ 3 and {ϕε} is a sequence of smooth functions
converging to δ0 in distributional sense, then the “approximating local times” L0,ε

t

=
∫ t
0

∫
Rd ϕε(x)Xs(dx) ds converge in L2 as ε → 0. The limit L0

t is independent of
the particular choice of {ϕε} and is called local time of super-Brownian motion.

Another way of defining the local time of super-Brownian motion is by means
of the super-Brownian occupation time, a concept that was introduced by Iscoe [10]
in the context of (α, d, β)-superprocess. The occupation time is defined by Yt(B) :=∫ t
0 Xs(B) ds, for t > 0 and any Borel set B ⊂ Rd. The local time Lt, when it exists,
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is defined as the density of Yt(dx) with respect to the Lebesgue measure λ (≡ dx) on
Rd. This concept of local time was studied, mainly, by Sugitani [15], Fleischmann
[8] and Krone [11]. Dynkin introduced in [6] another concept of local time, l t, and
gave conditions for existence of lt which are met by super-Brownian motion when
d ≤ 3.

In [7] Feldman and Iyer proved that the local times Lt and lt are equivalent
concepts. In this note we use a semimartingale representation of local time (Theorem
3.1) to show that the three notions of local time Lt, lt and Lt are equivalent.

The representation obtained in Theorem 3.1 holds not only when X is finite
measure-valued; it is also valid when X is a super-Brownian motion whose values
are infinite tempered measures on Rd, and in such context one can apply formula
(4.1) to obtain the limit

lim
t→∞

1
t

∫ t

0
Xs(ψ)ds, ψ ∈ Cc(Rd), (1.1)

where Cc(Rd) denotes the space of real-valued continuous functions on Rd with
compact support.

Cox and Griffeath [3], and independently Fleischmann and Gärtner [9] proved
that, when d = 2 and X0 = λ, the limit (1.1) exists and equals

(∫
R2 ψ(x)dx

)
ξ,

where ξ is a non-degenerated infinitely divisible random variable. In Theorem 4.2
we give a brief proof of this result and, moreover, identify the random variable ξ
as the super-Brownian local time L0

1 at time t = 1, a fact that was discovered by
Fleischmann [8] (for L0

1 instead of L0
1) using a different method.

We conclude this section introducing notations and recalling some basic defini-
tions. The set of all finite measures defined on the Borel σ-algebra B(Rd) will be
denoted by Mf (Rd). We denote by µ(ϕ) the integral with respect to the measure µ
of the function ϕ ∈ B(Rd), where B(Rd) also denotes the space of Borel measurable
functions on Rd. Let B ≡ {Bt : t ≥ 0} be the d-dimensional Brownian motion, and

Stϕ(x) := Ex[ϕ(Bt)] =
∫

Rd

ϕ(y)qt(x, y)dy, ϕ ∈ Bb(Rd), (1.2)

where

qt(x, y) := qt(x− y) =
1

(4πt)d/2
exp(−|x− y|2/4t), t > 0, x, y ∈ Rd, (1.3)

and Bb(Rd) is the space of bounded Borel measurable functions on Rd. The family of
operators {St, t ≥ 0} forms a semigroup of contractions with infinitesimal generator
the Laplacian ∆ in Rd.

A càdlàg Markov process X = {Xt : t ≥ 0} with state space Mf (Rd) will be
called super-Brownian motion if its Laplace transition functional is given by

Eµ

[
e−Xt(ϕ)

]
= E[e−Xt(ϕ)|X0 = µ] = e−µ(ut), µ ∈Mf (Rd), t ≥ 0,
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where ϕ ∈ B(Rd) is non-negative and u = ut is the unique non-negative solution of
the integral equation

ut = Stϕ−
∫ t

0
Ss(ut−s)2ds, t ≥ 0. (1.4)

We refer to [4], [5] or [13] for background on super-Brownian motion and Markov
measure-valued processes. A basic fact is the martingale problem for super-Brownian
motion (e.g. [2]), which says that for each function f ∈ C2

b and t ≥ 0 the random
variable Xt(f) can be expressed as

Xt(f) = µ(f) +Mt(f) +
∫ t

0
Xs(∆f)ds, (1.5)

where M(f) is a continuous martingale with increasing process determined by

〈M(f),M(g)〉t = 2
∫ t

0
Xs(fg)ds, t ≥ 0. (1.6)

2 Some properties of the Green’s function

For each a > 0 and ε ≥ 0 we define

Ga
ε (x, y) :=

∫ ∞

0
e−atqt+ε(x, y) dt, x, y ∈ Rd. (2.1)

Ga := Ga
0 is termed the Green’s function of Brownian motion B; it is obvious that

Ga
ε (x, y) = Ga

ε (|x− y|).

Lemma 2.1 The function Ga
ε is in L1(Rd, dx) and its characteristic function Ĝa

ε (z)
is (a+ |z|2)−1 exp(−ε|z|2). Moreover Ga

ε is in L2(Rd, dx) for d ≤ 3.

Proof. It is obvious that Ga
ε ∈ L1(Rd, dx). The assertion regarding Ĝa

ε follows
clearly from the identity q̂t(x) = e−t|x|2 . By the Plancherel’s theorem

||Ga
ε ||22 = ||Ĝa

ε ||22 =
∫

Rd

(
e−ε|z|2

a+ |z|2

)2

dz

= c

∫ ∞

0
rd−1

(
e−εr2

a+ r2

)2

dr ≤ c

∫ ∞

0
rd−1

(
1

a+ r2

)2

dr

≤ c

{∫ 1

0
rd−1

(
1

a+ r2

)2

dr +
∫ ∞

1
rd−5dr

}
= c(I + II),

for some positive constant c. The integral I is finite due to the continuity of r 7→
rd−1(a+ r2)−2 on [0, 1], whereas II is convergent if d ≤ 3. This shows that Ga

ε is in
L2(Rd, dx) for d ≤ 3.
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Lemma 2.2 Ga
ε → Ga in L1(Rd, dx) as ε→ 0, and the convergence is in L2(Rd, dx)

if d ≤ 3.

Proof. We will use the estimation

|Ga(x)−Ga
ε (x)| =

∣∣∣∣∫ ∞

0
e−atqt(x) dt−

∫ ∞

ε
e−a(t−ε)qt(x) dt

∣∣∣∣
≤

∣∣∣∣∫ ∞

0
e−atqt(x) dt− eaε

∫ ∞

0
e−atqt(x) dt

∣∣∣∣
+
∣∣∣∣eaε

∫ ∞

0
e−atqt(x) dt− eaε

∫ ∞

ε
e−atqt(x) dt

∣∣∣∣
= |1− eaε|

∫ ∞

0
e−atqt(x) dt+ eaε

∫ ε

0
e−atqt(x) dt.

The L1 convergence follows from

||Ga −Ga
ε ||L1 =

∫
Rd

|Ga(x)−Ga
ε (x)|dx

≤ |1− eaε|
∫ ∞

0
e−at

∫
Rd

qt(x)dxdt

+eaε

∫ ε

0
e−at

∫
Rd

qt(x)dxdt

= |1− eaε| a−1 + eaε(1− e−aε)a−1 = 2a−1(eaε − 1).

Notice that Ga
ε ∈ L2 for d ≤ 3 due to Lemma 2.1. Using Plancherel’s theorem it

follows, as in the proof of Lemma 2.1, that

||Ga −Ga
ε ||2L2 = ||(Ga −Ga

ε )̂ ||2L2

≤ c

{
(1− e−ε)2

∫ 1

0
rd−1

(
1

a+ r2

)2

dr

+
∫ ∞

1
rd−5

(
1− e−εr2

)2
dr

}
,

for some c > 0. Using the elementary inequality 1− e−x ≤ x1/8, x ≥ 0, we obtain

||Ga −Ga
ε ||2L2 ≤ c

{
(1− e−ε)2

∫ 1

0
rd−1

(
1

a+ r2

)2

dr + ε1/4

∫ ∞

1
rd−9/2dr

}
= c{(1− e−ε)2I + ε1/4II}.

The integral I has already been considered in the proof of Lemma 2.1, whereas the
integral II is finite for d ≤ 3. Letting ε→ 0 yields convergence in L2 if d ≤ 3.

Lemma 2.3 ∆Ga
ε = aGa

ε − qε for each a > 0 and ε > 0.
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Proof. Noting that

−aGa
ε (x) =

∫ ∞

0
qt+ε(x)

d

dt
(e−at) = qt+ε(x)e−at

∣∣∞
0
−
∫ ∞

0
e−at d

dt
(qt+ε(x)),

from the equalities

d

dt
(qt+ε(x)) = qt+ε(x)

(
|x|2

4(t+ ε)2
− d

2(t+ ε)

)
= ∆qt+ε(x),

we arrive to the expression

−aGa
ε (x) = −qε(x)−

∫ ∞

0
e−at∆qt+ε(x) dt.

From here the result follows by applying the dominate convergence theorem.

3 A representation of the local time of super-Brownian
motion

Theorem 3.1 Let X be the super-Brownian motion with X0 = µ ∈Mf (Rd), where
µ� dx and dµ/dx ∈ Bb(Rd). If d ≤ 3, then the local time L0

t exist and admits the
representation:

L0
t = µ(Ga)−Xt(Ga) + a

∫ t

0
Xs(Ga) ds+Mt(Ga), a.s. (3.1)

for each t > 0 and a > 0, where M(Ga) is a square integrable martingale. Moreover,
for each z ∈ Rd the local time at z, Lz

t , has the expression.

Lz
t = µ(Ga(· − z))−Xt(Ga(· − z)) + a

∫ t

0
Xs(Ga(· − z)) ds+Mt(Ga(· − z)).

By differentiating in the usual way the Laplace functional of X one obtains

Eµ [Xt(ϕ)] = µ(Stϕ), (3.2)

Eµ [Xt(f)Xs(g)] = µ(Stf)µ(Ssg) + 2
∫ s∧t

0
µ (Sr ((St−rf)(Ss−rg))) dr, (3.3)

for µ ∈Mf (Rd), f, g ∈ Bb(Rd) and 0 ≤ s, t. From here it is easy to see that for any
non-negative f ∈ L1(Rd, dx) ∩ L2(Rd, dx) and t ≥ 0

Eµ [Xt(f)] ≤ ||dµ/dx||∞||f ||L1 , (3.4)
Eµ

[
(Xt(f))2

]
≤ c(t)

(
||f ||2L1 + ||f ||2L2

)
, (3.5)

for some positive constant c(t).
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Proof of Theorem 3.1. Using (1.5) and the equality ∆Ga
ε = aGa

ε − qε that
we proved in Lemma 2.3 we obtain∫ t

0
Xs(qε) ds = µ(Ga

ε )−Xt(Ga
ε ) + a

∫ t

0
Xs(Ga

ε ) ds+Mt(Ga
ε ). (3.6)

We want to show that the sequence of random variables {
∫ t
0 Xs(qε) ds}ε>0 converges

in L2 as ε → 0. To prove this it is enough to show convergence in L2 of the right
hand side of (3.6). Using Lemma 2.1, (3.4), (3.5) and Jensen’s inequality it follows
that

E

[(∫ t

0
Xs(Ga

ε )ds−
∫ t

0
Xs(Ga)ds

)2
]

= E

[(∫ t

0
Xs(Ga

ε −Ga)ds
)2
]

≤ t

∫ t

0
E
[
(Xs(Ga

ε −Ga))2
]
ds

≤ c(t)
(
||Ga

ε −Ga||2L1 + ||Ga
ε −Ga||2L2

)
.

From (1.6) we obtain

E[(Mt(Ga
ε )−Mt(Ga))2] = E[(Mt(Ga

ε −Ga))2]

= 2
∫ t

0
E
[
Xs((Ga

ε −Ga)2)
]
ds

≤ 2t ‖dµ/dx‖∞ ‖Ga
ε −Ga‖2

L2 ,

which together with Lemma 2.2 shows that Mt(Ga
ε ) →Mt(Ga) in L2 as ε→ 0. The

L2-convergence of the remaining terms can be obtained in a similar fashion. The
last statement in Theorem 3.1 is a consequence of invariance under translation of
the Lebesgue measure.

Remark. Consider the sequence of processes {L0,ε}ε>0 defined by L0,ε =
{
∫ t
0 Xs(qε) ds, 0 ≤ t ≤ T}. Let {εn}n be a sequence of non-negative numbers that

converges to cero, and 0 ≤ t1, ..., tk ≤ T . Then from the proof of Theorem 3.1,

E
∣∣∣(L0,εn

t1
, ..., L0,εn

tk
)− (L0

t1 , ..., L
0
tk

)
∣∣∣ ≤ k

k∑
i=1

E
∣∣∣L0,εn

ti
− L0

ti

∣∣∣→ 0

as εn → 0, i.e., the finite-dimensional distributions of {L0,ε}ε>0 converge to those
of L0. Following the approach of [12] it is possible to show tightness of {L0,ε}ε>0,
and hence weak convergence of {L0,ε}ε>0 to L0 as ε → 0 in the Skorokhod space
D[0,T ](R).

4 Two applications of the representation of super-Brownian
local time

The following theorem, together with Proposition 2.3 in [7], implies that the three
notions of super-Brownian local time referred to in the introductory section yield
equivalent concepts.
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Theorem 4.1 Let X be the super-Brownian motion of Theorem 3.1 and d ≤ 3. If
f ∈ L1(Rd, dx) ∩ L2(Rd, dx) then∫ t

0
Xs(f) ds =

∫
Rd

f(x)Lx
t dx a.s. (4.1)

for all t ≥ 0. The expression (4.1) holds true if f is only measurable and bounded.
In particular, Lt = Lt, a.s.

Proof. We first consider the case in which f ∈ L1(Rd, dx)∩L2(Rd, dx). In order to
work with the local time at an arbitrary point z ∈ Rd, we write (3.6) in the form∫ t

0
Xs(qε(· − z)) ds = µ(Ga

ε (· − z))−Xt(Ga
ε (· − z))

+a
∫ t

0
Xs(Ga

ε (· − z)) ds+Mt(Ga
ε (· − z)).

Multiplying both sides of the above expression by f(z) and integrating with respect
to z we obtain∫ t

0
Xs

(∫
Rd

f(z)qε(· − z)dz
)
ds =

∫
Rd

f(z)
∫ t

0
Xs(qε(· − z)) ds dz

=
∫

Rd

f(z) [µ(Ga
ε (· − z))−Xt(Ga

ε (· − z))

+a
∫ t

0
Xs(Ga

ε (· − z))ds+ Mt(Ga
ε (· − z))] dz.

Let us start by showing the convergence∫ t

0
Xs

(∫
Rd

f(z)qε(· − z)dz
)
ds→

∫ t

0
Xs(f)ds (4.2)

in L2(P ) when ε→ 0. By Jensen’s inequality and (3.5)

E

[(∫ t

0
Xs

(∫
Rd

f(z)qε(· − z)dz
)
ds−

∫ t

0
Xs(f)ds

)2
]

= E

[(∫ t

0
Xs

(∫
Rd

f(z)qε(· − z)dz − f(·)
)
ds

)2
]

≤ t

∫ t

0
E

[(
Xs

(∫
Rd

f(z)qε(· − z)dz − f(·)
))2

]
ds

≤ c(t)

(∥∥∥∥∫
Rd

f(z)qε(· − z)dz − f(·)
∥∥∥∥2

L1

+
∥∥∥∥∫

Rd

f(z)qε(· − z)dz − f(·)
∥∥∥∥2

L2

)
. (4.3)
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Using the scaling property of the Gaussian density qt,∥∥∥∥∫
Rd

f(z)qε(· − z)dz − f(·)
∥∥∥∥

L1

=
∫

Rd

∣∣∣∣∫
Rd

f(x− z)qε(z)dz − f(x)
∣∣∣∣ dx

=
∫

Rd

∣∣∣∣∫
Rd

f(x− z)q1(ε−1/2z)ε−d/2dz − f(x)
∣∣∣∣ dx

=
∫

Rd

∣∣∣∣∫
Rd

f(x− ε1/2z)q1(z)dz −
∫

Rd

f(x)q1(z)dz
∣∣∣∣ dx

≤
∫

Rd

∫
Rd

q1(z)
∣∣∣f(x− ε1/2z)− f(x)

∣∣∣ dzdx
=

∫
Rd

q1(z)||f(· − ε1/2z)− f(·)||L1dz,

where limε→0 ||f(· − ε1/2z)− f(·)||L1 = 0 because f ∈ L1(Rd, dx). Since q1(z)||f(· −
ε1/2z) − f(·)||L1 ≤ 2||f ||L1q1(z), it follows from the bounded convergence theorem
that the first summand in the right hand side of (4.3) converges to 0 as ε→ 0.

For the other term in the right hand side of (4.3) we use Jensen’s inequality:∥∥∥∥∫
Rd

f(z)qε(· − z)dz − f(·)
∥∥∥∥2

L2

=
∫

Rd

(∫
Rd

f(z)qε(x− z)dz − f(x)
)2

dx

≤
∫

Rd

(∫
Rd

∣∣∣f(x− ε1/2z)− f(x)
∣∣∣ q1(z)dz)2

dx

≤
∫

Rd

∫
Rd

|f(x− ε1/2z)− f(x)|2q1(z)dzdx

=
∫

Rd

q1(z)||f(· − ε1/2z)− f(·)||2L2dz.

Using now that f ∈ L2(Rd, dx) we conclude as before that the second term in the
right hand side of (4.3) tends to 0 as ε→ 0. This finishes the proof of (4.2).

Now we will prove that∫
Rd

f(z)
[
µ(Ga

ε (· − z))−Xt(Ga
ε (· − z)) + a

∫ t

0
Xs(Ga

ε (· − z)) ds+Mt(Ga
ε (· − z))

]
dz

converges to∫
Rd

f(z)
[
µ(Ga(· − z))−Xt(Ga(· − z)) + a

∫ t

0
Xs(Ga(· − z))ds+Mt(Ga(· − z))

]
dz,
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in L2(P ) when ε→ 0. Indeed, using Jensen’s inequality, (1.6) and (3.4),

E

[(∫
Rd

f(z)Mt(Ga
ε (· − z))dz −

∫
Rd

f(z)Mt(Ga(· − z))dz
)2
]

= E

[(∫
Rd

f(z)Mt(Ga
ε (· − z)−Ga(· − z))dz

)2
]

≤ E

[(∫
Rd

|f(z)|dz
)∫

Rd

(Mt(Ga
ε (· − z)−Ga(· − z)))2|f(z)|dz

]
= ||f ||L1

∫
Rd

E[(Mt(Ga
ε (· − z)−Ga(· − z)))2]|f(z)|dz

= ||f ||L1

∫
Rd

∫ t

0
E[Xs((Ga

ε (· − z)−Ga(· − z))2)]ds|f(z)|dz

≤ ||f ||L1c(t)
∫

Rd

f(z)||Ga
ε (· − z)−Ga(· − z)||2L2dz

= ||f ||2L1c(t)||Ga
ε −Ga||2L2

Using again Jensen’s inequality and (3.5),

E

[(∫
Rd

f(z)
∫ t

0
Xs(Ga

ε (· − z))dsdz −
∫

Rd

f(z)
∫ t

0
Xs(Ga(· − z))dsdz

)2
]

= E

[(∫
Rd

f(z)
∫ t

0
Xs(Ga

ε (· − z)−Ga(· − z))dsdz
)2
]

≤ ||f ||L1

∫
Rd

∫ t

0
E[Xs(Ga

ε (· − z)−Ga(· − z))2]ds|f(z)|dz

≤ c(t)||f ||L1

∫
Rd

∫ t

0
(||(Ga

ε −Ga)(· − z)||2L1 + ||(Ga
ε −Ga)(· − z)||2L2)ds|f(z)|dz

= c(t)t||f ||2L1(||Ga
ε −Ga||2L1 + ||Ga

ε −Ga||2L2).

The remaining moments E
[(∫

Rd f(z)µ (Ga
ε (· − z)) dz −

∫
Rd f(z)µ (Ga(· − z)) dz

)2]
and E

[(∫
Rd f(z)Xt (Ga

ε (· − z)) dz −
∫

Rd f(z)Xt (Ga(· − z)) dz
)2] can be bounded

in a similar way. Applying Lemma 2.2 we obtain that∫ t

0
Xs(f)ds =

∫
Rd

f(z)(µ(Ga(· − z))−Xt(Ga(· − z))

+a
∫ t

0
Xs(Ga(· − z))ds+Mt(Ga(· − z)))dz, a.s. (4.4)

for all t ≥ 0, and from Theorem 3.1 we conclude that∫ t

0
Xs(f)ds =

∫
Rd

f(z)Lz
t dz, a.s.
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Consider now the case in which f is a bounded Borel-measurable function. Let {fn}
be a sequence in L1(Rd, dx) ∩ L2(Rd, dx) with ||fn||∞ ≤ ||f ||∞ for each n, and such
that fn → f pointwise. Then by (4.4) we have, for each n,∫ t

0
Xs(fn)ds =

∫
Rd

fn(z)(µ(Ga(· − z))−Xt(Ga(· − z))

+a
∫ t

0
Xs(Ga(· − z))ds+Mt(Ga(· − z)))dz. (4.5)

We will show that∫ t

0
Xs(fn)ds→

∫ t

0
Xs(f)ds in L2(P ) as ε→ 0. (4.6)

Indeed, by Jensen’s inequality and (3.5),

E

[(∫ t

0
Xs(fn)ds−

∫ t

0
Xs(f)ds

)2
]

= E

[(∫ t

0
Xs(fn − f)ds

)2
]

≤ t

∫ t

0
E[(Xs(fn − f))2]ds

= t

∫ t

0
((µ(Ss(fn − f)))2 + 2

∫ s

0
µ(Sr(Ss−r(fn − f))2)dr)ds

≤ t

∫ t

0
(µ(1)

∫
Rd

(Ss(fn − f))2(x)µ(dx) + 2µ(
∫ s

0
Sr(Ss−r(fn − f))2dr))ds

≤ ct

∫ t

0
µ((Ss(fn − f))2 +

∫ s

0
Sr(Ss−r(fn − f))2dr)ds.

Since |(fn − f)(y)|qs(x, y) ≤ 2||f ||∞qs(x, y), we deduce that Ss(fn − f)(x) → 0 as
n→∞. Moreover, |Ss(fn − f)(x)| ≤ 2||f ||∞ implies that∣∣∣∣(Ss(fn − f)(x))2 +

∫ s

0
Sr(Ss−r(fn − f))2(x)dr

∣∣∣∣ ≤ 4||f ||2∞(1 + s)

uniformly in x, and hence

(Ss(fn − f)(x))2 +
∫ s

0
Sr(Ss−r(fn − f))2(x)dr → 0 as n→∞.

In this way (4.6) follows from the dominated convergence theorem.

We now prove the convergence of the right hand side of (4.5). It suffices to show
how to achieve this for two of the terms since the convergence of the remaining ones
is proved in a similar way.

10



From (3.4) we obtain

E

[(∫
Rd

fn(z)Mt(Ga(· − z))dz −
∫

Rd

f(z)Mt(Ga(· − z))dz
)2
]

= E

[(∫
Rd

(fn(z)− f(z))Mt(Ga(· − z))dz
)2
]

= E

[∫
Rd

(fn(z)− f(z))Mt(Ga(· − z))dz
∫

Rd

(fn(w)− f(w))Mt(Ga(· − w))dw
]

=
∫

Rd

∫
Rd

(fn(z)− f(z))(fn(w)− f(w))E [Mt(Ga(· − z))Mt(Ga(· − w))] dzdw

= E

[∫
Rd

∫
Rd

(fn(z)− f(z))(fn(w)− f(w))
∫ t

0
Xs(Ga(· − z)Ga(· − w))dsdzdw

]
= E

[∫ t

0
Xs

((∫
Rd

(fn(z)− f(z))Ga(· − z)dz
)2
)
ds

]

=
∫ t

0
µ

(
Ss

(∫
Rd

(fn(z)− f(z))Ga(· − z)dz
)2
)
ds.

Since |(fn(z)− f(z))Ga(· − z)| ≤ 2‖f‖∞Ga(· − z) and Ga ∈ L1(Rd, dx), we have

lim
n→∞

∫
Rd

(fn(z)− f(z))Ga(· − z) dz = 0

and

lim
n→∞

Ss

(∫
Rd

(fn(z)− f(z))Ga(· − z)dz
)2

(x) = 0

for any s ≥ 0. Using this and that∣∣∣∣∣Ss

(∫
Rd

(fn(z)− f(z))Ga(· − z)dz
)2

(x)

∣∣∣∣∣ ≤ 4||f ||2∞||Ga||2L1 ,

we conclude from the dominated convergence theorem that∫
Rd

fn(z)Mt(Ga(· − z))dz →
∫

Rd

f(z)Mt(Ga(· − z))dz

11



in L2(P ) as n → ∞. Finally, let us show convergence of the term containing∫ t
0 Xs(Ga(· − z))ds. From (3.5),

E

[(∫
Rd

fn(z)
∫ t

0
Xs(Ga(· − z))dsdz −

∫
Rd

f(z)
∫ t

0
Xs(Ga(· − z))dsdz

)2
]

= E

[(∫
Rd

(fn(z)− f(z))
∫ t

0
Xs(Ga(· − z))dsdz

)2
]

=
∫

Rd

∫
Rd

∫ t

0

∫ t

0
(fn(z)− f(z))(fn(w)− f(w))

·E [Xs(Ga(· − z))Xr(Ga(· − w))] dr ds dz dw

=
(
µ

(∫ t

0
(fn(z)− f(z))SsG

a(· − z)dzds
))2

+2µ
(∫ t

0

∫ t

0

{∫
Rd

∫
Rd

(fn(z)− f(z))(fn(w)− f(w))

·
∫ r∧s

0
Sv(Sr−vG

a(· − z)Ss−vG
a(· − w)) dv dw dz

}
dr ds

)
.

It suffices to show that the sequence

In :=
∫

Rd

∫
Rd

(fn(z)− f(z))(fn(w)− f(w))

·
∫ r∧s

0
Sv(Sr−vG

a(· − z)Ss−vG
a(· − w)) dv dw dz, n ∈ N,

is uniformly bounded and converges to cero. Indeed,

In ≤ 4||f ||2∞
∫

Rd

∫
Rd

∫ r∧s

0
Sv(Sr−vG

a(· − z)Ss−vG
a(· − w))(x) dv dw dz

= 4||f ||2∞
∫ r∧s

0

∫
Rd

∫
Rd

Sr−vG
a(· − z)(y) dz

·
∫

Rd

Ss−vG
a(· − w)(y) dw qv(y, x) dy dv,

where ∫
Rd

Ss−vG
a(· − w)(y)dw = ||Ga||L1 =

∫
Rd

Sr−vG
a(· − z)(y)dz.

Hence In ≤ 4t||f ||2∞||Ga||2L1 and the convergence of In to cero follows from the fact
that ∫

Rd

∫
Rd

∫ r∧s

0
Sv(Sr−vG

a(· − z)Ss−vG
a(· − w))(x) dv dw dz,

is bounded.
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We have proved that for any bounded Borel-measurable f,∫ t

0
Xs(f)ds =

∫
Rd

f(z){µ(Ga(· − z))−Xt(Ga(· − z))

+a
∫ t

0
Xs(Ga(· − z))ds+Mt(Ga(· − z))}dz, a.s.,

for all t ≥ 0. The expression (4.1) follows from Theorem 3.1. Putting f = 1B in
(4.1), where B ∈ B(Rd), yields

Yt(B) =
∫ t

0
Xs(1B)ds =

∫
B
Lz

t dz a.s.

which means that Yt(·) � dx and that its density is precisely the local time. There-
fore Lz

t := dYt/dx = Lz
t a.s. for all t ≥ 0.

Theorem 4.2 Let X be the super-Brownian motion starting with X0 = λ and d =
2. Then for each y ∈ R2, t > 0 and ψ ∈ Cc(R2),

1
r

∫ rt

0
Xs(ψ(· − r1/2y))ds→ λ(ψ)Ly

t

in distribution as r → ∞, where Ly
t is the local time of X. Moreover, Var(Ly

t ) =
(t2 ln 2)/2π.

Remark. Note that the value of Var (Ly
t ) is consistent with the one obtained in

[3].

Proof of Theorem 4.2. Using the martingale problem of [14] (Proposition
1.7) it is easy to see that our theorems 3.1 and 4.1 remain valid when X0 = λ.
Moreover [14], for each R > 0, {R−2Xt(ϕ(·/R))} has the same distribution as
{Xt/R2(ϕ)}. Hence putting R = r1/2 and t = r−1s with r > 0, s > 0, we con-
clude that {rXs/r(ϕ(r1/2·))} and {Xs(ϕ)} have a common distribution, and that
the same is true for

1
r

∫ rt

0
Xs(ψ(· − r1/2y))ds and

1
r

∫ rt

0
rXs/r(ψ(r1/2 · −r1/2y))ds.

By Theorem 4.1,

1
r

∫ rt

0
rXs/r(ψ(r1/2 · −r1/2y))ds =

1
r

∫ t

0
rXs(ψ(r1/2(· − y)))rds

=
∫

R2

rψ(r1/2(x− y))Lx
t dx a.s.

=
∫

R2

ψ(x)Ly+x/r1/2

t dx.
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Since Lx
t is a process continuous in x [15] and ψ is continuous with compact support,

it follows that a.s. ∫
R2

ψ(x)Ly+x/r1/2

t dx→ λ(ψ)Ly
t as r →∞.

In Theorem 3.1 we proved that E[(Ly
t )

2] = limε→0E[(Ly,ε
t )2], where

Ly,ε
t :=

∫ t

0
Xs(qε(· − y))ds, ε > 0.

Due to the fact that Lebesgue measure λ is invariant for the Brownian motion, it
follows from (3.3) that

E
[
(Ly,ε

t )2
]

=
∫ t

0

∫ t

0
E [Xu(qε(· − y))Xv(qε(· − y))] du dv

=
(∫ t

0
λ (Su(qε(· − y))) du

)2

+2
∫ t

0

∫ t

0

∫ u∧v

0
λ (Sw(Su−w(qε(· − y))Sv−w(qε(· − y)))) dw du dv

=
(∫ t

0
λ(qε(· − y)) du

)2

+2
∫ t

0

∫ t

0

∫ u∧v

0
λ (Su−w(qε(· − y))Sv−w(qε(· − y))) dw du dv.

By the Chapman-Kolmogorov equation

λ(Su−w(qε(· − y))Sv−w(qε(· − y))) = λ(qε+u−w(· − y)qε+v−w(· − y))

=
1

4π(2ε+ u+ v − 2w)
.

Hence

E[(Ly,ε
t )2] = t2 +

1
2π

∫ t

0

∫ t

0

∫ u∧v

0

1
2ε+ u+ v − 2w

dw du dv

= t2 +
1
4π
{2t2 ln (ε+ t) + 2t2 ln 2− 2t2 ln (2ε+ t)

+6εt+ 4εt ln 2 + 4εt ln (ε+ t)− 8εt ln (2ε+ t)
+8ε2 ln 2 + 6ε2 ln ε+ 2ε2 ln (ε+ t)− 8ε2 ln (2ε+ t)}.

Therefore E[(Ly
t )

2] = t2 + (t2 ln 2)/2π. The result follows noticing that E[Ly,ε
t ] = t

for all ε > 0.
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[9] K. Fleischmann and J. Gärtner (1986). Occupation time processes at a critical
point, Math. Nachr. Vol. 125, 275-290.

[10] I. Iscoe (1986). A weighted occupation time for a class of measure-valued branch-
ing processes, Probab. Th. Rel. Fields 71, 85-116.

[11] S. M. Krone (1993). Local times for superdiffusions, Ann. Prob. Vol. 21, No. 3,
1599-1623.

[12] M. Lewin (1999). Local time for stable discontinuous superprocesses in one di-
mension, Stochastic Analysis and Applications, 17(1), 71-84.

[13] J.-F. Le Gall (1999). Spatial branching processes, random snakes and partial
differential equations. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag,
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